Calculates the components to predict all the response variables.
Arguments
- Y
the matrix of random responses
- family
a vector of character of the same length as the number of response variables: "bernoulli", "binomial", "poisson" or "gaussian" is allowed.
- size
describes the number of trials for the binomial dependent variables: a (number of observations * number of binomial response variables) matrix is expected.
- X
the matrix of the standardized explanatory variables
- AX
the matrix of the additional explanatory variables
- random
the vector giving the group of each unit (factor)
- loffset
a matrix of size (number of observations * number of Poisson response variables) giving the log of the offset associated with each observation
- k
number of components, default is one
- init.sigma
a vector giving the initial values of the variance components, default is rep(1, ncol(Y))
- init.comp
a character describing how the components (loadings-vectors) are initialized in the PING algorithm: "pca" or "pls" is allowed.
- method
Regularization criterion type: object of class "method.SCGLR" built by function
methodSR
.
Examples
if (FALSE) { # \dontrun{
library(SCGLR)
# load sample data
data(dataGen)
k.opt=4
s.opt=0.1
l.opt=10
withRandom.opt=kCompRand(Y=dataGen$Y, family=rep("poisson", ncol(dataGen$Y)),
X=dataGen$X, AX=dataGen$AX,
random=dataGen$random, loffset=log(dataGen$offset), k=k.opt,
init.sigma = rep(1, ncol(dataGen$Y)), init.comp = "pca",
method=methodSR("vpi", l=l.opt, s=s.opt,
maxiter=1000, epsilon=10^-6, bailout=1000))
plot(withRandom.opt, pred=TRUE, plane=c(1,2), title="Component plane (1,2)",
threshold=0.7, covariates.alpha=0.4, predictors.labels.size=6)
} # }